
A Randomized Strategy for
Cooperative Robot Exploration

Antonio Franchi Luigi Freda Giuseppe Oriolo Marilena Vendittelli
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Eudossiana 18, 00184 Roma, Italy

{franchi,freda,oriolo,venditt}@dis.uniroma1.it

Abstract— We present a cooperative exploration strategy
for mobile robots. The method is based on the randomized
incremental generation of a collection of data structures called
Sensor-based Random Trees, each representing a roadmap of
an explored area with an associated safe region. Decentralized
cooperation and coordination mechanisms are introduced so
as to improve the exploration efficiency and to avoid conflicts.
Simulations in various environments are presented to show the
performance of the proposed technique.

I. INTRODUCTION

Exploration is the basic task by which a mobile robot
covers an unknown area, typically learning a model of
the environment at the same time. Possible applications
include automated surveillance, search-and-rescue operations
in hostile areas, map building and planetary missions.

The use of a multi-robot system brings in general many
advantages [1], [2]. In exploration, it aims at significantly
reducing the time required to complete the task. If a map is to
be acquired, the redundant information provided by multiple
robots can be also used to increase the final map accuracy and
the quality of the localization [3]. In order to achieve these
objectives, some sort of task decomposition and allocation
are required. In practice, strategies to conveniently distribute
robots over the environment should be accurately devised
in order to reduce the occurrence of spatial conflicts [4]
and actually reap the benefits of a multi-robot architecture.
Clearly, communication plays a crucial role in achieving a
cooperative behavior with improved performance [5].

In most exploration strategies, the boundary between
known and unknown territory (the frontier) is approached
in order to maximize the information gain. For the multi-
robot case, a pioneering work in this direction is [6]: the
robots merge the acquired information in a global gridmap
of the environment, from which the frontier is extracted
and used to plan the individual robot motions. While this
basic scheme lacks an arbitration mechanism preventing
robots from approaching the same frontier region, in [7]
it is proposed to negotiate robot targets by optimizing a
utility function which takes into account the information
gain of a particular region, the cost of reaching it and
the number of robots currently heading there. In [8], the
utility of a particular frontier region from the viewpoint
of relative robot localization (and hence, of the accuracy
of map merging) is also considered. In the incremental

deployment algorithm of [9], robots approach the frontier
while retaining visual contact with each other. An interesting
multi-robot architecture in which robots are guided through
the exploration by a market economy is presented in [10],
whereas [11] proposes a centralized approach which uses a
frontier-based search and a bidding protocol assign frontier
targets to the robots.

This paper presents a randomized strategy for cooperative
exploration which is the outgrowth of the SRT method,
designed for a single robot and presented in [12], [13]. The
basic tool therein is the Sensor-based Random Tree (SRT),
a compact data structure representing a roadmap of the
explored area, which can be seen as a sensor-based version
of the RRT concept [14]. In particular, each node of an
SRT contains a configuration assumed by the robot and the
Local Safe Region (LSR) perceived from that location, while
an arc between two nodes represents a collision-free path
between the two configurations. The SRT is incrementally
built by using a randomized local planner which privileges
the frontier of the LSR, i.e., the directions that lead from
the LSR to unexplored areas. This mechanism automatically
realizes a trade-off between information gain and navigation
cost when choosing the next robot configuration.

Our cooperative exploration strategy is essentially a par-
allelization of the single-robot SRT method, with the addi-
tion of three functionalities: (i) cooperation, for increasing
efficiency (ii) coordination, to avoid conflicts (iii) commu-
nication, as a fundamental tool to cooperate and coordinate.
Each robot of the team builds an SRT, taking into account the
presence of other robots through an appropriate redefinition
of the concept of local frontier, and planning its motion
toward areas which appear to be unexplored by itself as well
as the rest of the team. In addition to this local cooperation
mechanism, there is a simple coordination algorithm that
guarantees safe collective motion. Once a robot has com-
pleted its SRT, it makes itself available for supporting other
robots in their expansion; this introduces a form of global
cooperation. A key feature of the proposed strategy is that it
is completely decentralized and can be implemented with a
limited communication range.

The paper is organized as follows. After stating the
working assumptions, we outline in Sect. III the basic steps
of the exploration algorithm running on each robot. In
particular, the construction of an SRT with the associated

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10­14 April 2007

WeC1.3

1­4244­0602­1/07/$20.00 ©2007 IEEE. 768

local cooperation and coordination strategies is described in
Sect. IV, while the supportive phase is detailed in Sect. V.
Simulation results in different environments are reported and
discussed in Sect. VI. Possible extensions of the present work
are mentioned in the concluding section.

II. PROBLEM SETTING

The cooperative SRT-based exploration method is pre-
sented under the following assumptions.

1) All the robots in the team are identical.
2) The robots move in a planar workspace, i.e., IR2 or

a connected subset of it.
3) Each robot is a disk which can move in any direction.

The configuration q of the robot is therefore the position of
the disk center.

4) Each robot knows its configuration.
5) Each robot is equipped with a sensory system which

provides the Local Safe Region (LSR) S(q), a (possibly
conservative) description of the free space surrounding the
robot at q. The LSR is a star-shaped1 subset of IR2, whose
maximum radius is bounded by the robot perception range
Rp. Each LSR is stored in the robot memory with an
associated timestamp, i.e., the time at which it was gathered.

6) Each robot knows its ID number.
7) Each robot can broadcast within a communication range

Rc the information stored in its memory (or relevant portions
of it) at any time. The robot ID number is included in the
heading of any transmission. The robot is always open for
receiving communication from other robots inside Rc.

Many of these assumptions are only taken for simplicity
and can be relaxed. First, the robots do not need to be
identical: for example, the sensory systems may very well
differ in nature and perception range. The assumption of
planar workspace is obviously not restrictive: 3D worlds are
perfectly admissible as long as the sensory system allows
the reconstruction of a planar LSR for planning the robot
motion. Assumption 3 is only taken for ease of presentation:
the proposed method is readily applicable to robots with ar-
bitrary shape, possibly subject to nonholonomic constraints.
As for Assumption 4, it can be eliminated by incorporating a
localization module in the SRT method as described in [15].
See the concluding section for additional comments.

III. COOPERATIVE SRT-BASED EXPLORATION

The design of our cooperative exploration strategy pro-
ceeds from the parallelization of the basic SRT method for a
single robot described in [12], [13], to which we essentially
add three functionalities: cooperation, for increasing effi-
ciency; coordination, to avoid conflicts; and communication
as a fundamental tool to cooperate and coordinate.

In the cooperative SRT-based exploration method, each
robot builds one or more partial maps of the environment,
organized in a collection of Sensor-Based Random Trees
(SRTs). Each node of an SRT represents a configuration q

1This means that S(q) is homeomorphic to the closed unit disk and a
line segment from the robot center to any point in S is completely in S.

COOPERATIVE SRT BASED EXPLORATION(qinit)
1 T .init(qinit);
2 BUILD SRT(qinit,T);
3 do %start the supportive phase
4 for i = 1 to n
5 if OPEN FRONTIER(Ti) ≥ F̄ ·ACTIVE AGENTS(Ti)
6 ADD(I, Ti);
7 Ts ← SELECT(I);
8 if Ts #= NULL
9 qcurr ← TRANSFER TO(Ts.root);
10 BUILD SRT(qcurr,Ts);
11 qcurr ← TRANSFER TO(T .root);
12 while EXPLORATION RUNNING()

Fig. 1. Pseudocode of the SRT-based cooperative exploration algorithm.

which was visited by at least one robot, together with the
associated Local Safe Region S(q). An arc between two
nodes represents a collision-free path between the two con-
figurations. The tree is incrementally built by extending the
structure in the most promising direction via a biased random
mechanism. The presence of other robots in the vicinity is
taken into account at this stage in order to maximize the
information gain and guarantee collision avoidance.

The exploration algorithm running on each robot is shown
in Fig. 1. At first, the robot builds its own SRT T rooted
at its starting configuration qinit through the BUILD SRT
procedure (see Sect. IV). This procedure terminates when the
robot is unable to further expand T . At this point, the robot
enters the do-while cycle (lines 3–12). This cycle identifies
the supportive phase in which the robot contributes to the
expansion of SRTs that have been initiated by other robots
(see Sect. V): this is achieved executing other instances of
the BUILD SRT procedure starting from the roots of these
trees. When the supportive phase ends, the robot has returned
to the root of its own tree and its exploration is over.

In the above exploration algorithm, only perception, plan-
ning and motion functionalities are made explicit. A parallel
communication thread runs on each robot, not described here
for compactness [16]. In principle, two approaches are pos-
sible. In the first, which is chosen for our presentation, each
robot continuously broadcasts all its knowledge, including
that derived from other robots: this means that the relevant
information for cooperation and coordination with other
agents inside the communication range Rc is immediately
available to the robot. The second solution, aimed at reducing
bandwidth consumption, would be to establish robot-to-robot
communications only when needed.

IV. THE BUILD SRT PROCEDURE

The pseudocode of the BUILD SRT procedure is shown in
Fig. 2. We first give a quick commentary of the main steps,
and then discuss their structure in some detail.

At each iteration of the SRT construction, the robot uses
all the available information (partly gathered on its own and
partly acquired through communication with other robots) to
identify the Group of Engaged Agents (GEA), i.e, the other
agents of the team with which cooperation and coordination
are necessary. This is achieved by first building the Group
of Pre-engaged Agents (GPA), i.e., the robots which are
candidate to belong to the GEA, and synchronizing with
them (BUILD AND WAIT GPA). Then, the robot gathers

WeC1.3

769

BUILD SRT(qinit,T)
1 qcurr ← qinit;
2 do
3 BUILD AND WAIT GPA();
4 S(qcurr)← PERCEIVE(qcurr);
5 ADD(T ,(qcurr, S(qcurr)));
6 G ←BUILD GEA();
7 F(qcurr) ← LOCAL FRONTIER(qcurr,S(qcurr),T ,

⋃
Ti);

8 qtarget ← PLAN(qcurr,F(qcurr), qinit);
8 if qtarget #= NULL
9 if |G| > 1
10 (Gf ,Gu) ← CHECK FEASIBILITY(G);
11 if Gu #= ∅
12 qtarget ← COORDINATE(Gf ,Gu);
13 qcurr ← MOVE TO(qtarget);
15 while qtarget #= NULL

Fig. 2. Pseudocode of the BUILD SRT procedure.

data through its sensory systems, builds the current LSR
(PERCEIVE) and accordingly updates its own tree T . The
actual GEA can now be built (BUILD GEA). At this point
the robot computes its local frontier (i.e., the portion of its
current LSR boundary leading to areas which appear to be
still unexplored) on the basis of T as well as of any other
tree Ti acquired through communication and stored in its
memory (LOCAL FRONTIER).

If the local frontier is non-empty, the robot generates a ran-
dom configuration contained in the current LSR and directed
towards the local frontier; otherwise, the target configuration
can be set either to the parent node (backtracking) or to a
child node (if any) provided that local frontiers are present
in the subtree of T starting from that child (PLAN).

If the GEA is composed only of the robot itself, the robot
directly moves to its target. Otherwise, the prospective paths
of the GEA robots are checked for collisions, and classified
in feasible and unfeasible paths (CHECK FEASIBILITY). If
the subset Gu of robots with unfeasible paths is non-empty,
a coordination phase takes place which may either confirm
or modify the current target of the robot (COORDINATE).
In particular, the robot’s move may be simply forbidden by
resetting the target to its current configuration. The MOVE
function then transfers the robot to the target.

The main loop is repeated until the target configuration is
set to NULL by the planner: that is, when the robot is unable
to further expand the tree T (no local frontiers remain) and
therefore it has backtracked to the root of its SRT (homing).

A. GPA/GEA construction
At the start of BUILD SRT, the robot is stationary and

needs to identify other robots whose LSRs may overlap with
its own, in order to cooperate (optimize the exploration) and
coordinate (avoid conflicts) with them. The other robots may
be stationary as well (in this case, their targets coincide with
the current configuration) or moving towards a target; hence,
a synchronization phase is needed.

We say that two robots are GPA-coupled if the distance
between their targets is at most 2Rp, i.e., twice the perception
range. The GPA of the robot is then built by grouping
together all the robots to which it can be connected through
a chain of GPA couplings (Fig. 3, left). To achieve syn-
chronization, the GPA is computed and updated until all its
members are stationary (BUILD AND WAIT GPA).

Fig. 3. An example of GPA/GEA construction Left: The GPA of robot
1 consists of robots 0,1,4,8: robot 0 is still moving towards its target
point, while robots 1,4,8 are stationary. The perception areas of the robots
(prospective in the case of robot 0) overlap in pairs. Right: Once the LSR
have been computed, only robots 1,4,8 belong to the GEA of robot 1 since
their LSRs overlap in pairs.

The communication range Rc clearly plays a role in the
GPA construction. Since the maximum distance between the
robot and any other robot with which it is GPA-coupled
is 3Rp (the other robot may still be moving to its target,
which however cannot be farther than Rp from the current
configuration), it is sufficient to assume Rc ≥ 3Rp to
guarantee that the GPA accounts for all the robots that are
candidate to belong to the GEA.

Once the robot is synchronized with its GPA, has per-
ceived the LSR and updated its SRT, it builds the GEA,
i.e., the robots with which cooperation and coordination
are actually necessary. If we define two robots to be GEA-
coupled when their LSRs overlap, the GEA of the robot
(Fig. 3, right) is composed by all the GPA robots to which
it can be connected through a chain of GEA couplings
(BUILD GEA). Synchronization guarantees that all the GPA
robots are still when the GEA is computed. The GEA is
symmetric, i.e., it is the same for all robots in the group.

The GEA is a cornerstone of our method, as it identifies a
group of robots that, in view of their vicinity, spontaneously
agree to cooperate and coordinate with each other on a
temporary basis. A remarkable feature is that the GEA can
be built with a limited communication range (Rc ≥ 3Rp).

B. Frontier extraction
Once the robot has built its GEA, the LOCAL FRONTIER

procedure is invoked. This computes the portion of the
boundary of the LSR S(qcurr) leading to areas which appear
unexplored according to the available information. To this
end, the robot uses its own tree T as well as any other tree Ti

stored in its memory and received through communications.
To find promising directions in S(qcurr), its boundary is

divided in obstacle, free and frontier arcs (Fig. 4). Obstacle
arcs are located along the directions where obstacles have
been detected, while free arcs fall within other known LSRs
(either belonging to T or to

⋃
Ti). Any arc which is neither

obstacle nor free is a frontier arc, and by construction
identifies the boundary between S(qcurr) and an unexplored
region. LOCAL FRONTIER identifies the frontier arcs of
S(qcurr) directly from the range reading profile [13], and
collects them in the local frontier F(qcurr).

The above definition, according to which a frontier arc
cannot belong to trees being built by other robots, imple-
ments a simple decentralized cooperation mechanism aimed
at optimizing the exploration performance of the team. Such

WeC1.3

770

Fig. 4. Frontier, free and obstacle arcs in the Local Safe Region S.

mechanism is inherently local and contingent because it
relies on communication between the robots.

C. Planner

The planner (Fig. 5) determines the new target configura-
tion on the basis of the local and open frontiers associated
to the current node. We define the open frontier of a tree
(subtree) as the sum of the lengths of the local frontiers
associated to its nodes.

If the local frontier F(qcurr) of the current LSR is non-
empty, the planner generates a random configuration in the
direction of F(qcurr). In particular, RANDOM DIR selects
an exploration direction φrand by first choosing one of the
frontier arcs, using a probability proportional to the arc
length, and then by generating φrand on the basis of a
normal distribution with mean value φm (the orientation of
the bisectrix of the arc) and standard deviation γ/6 (γ being
the arc angular width). The DISPLACE function generates
a new target configuration qtarget moving from qcurr in the
direction of φrand with a certain stepsize (a fixed percentage
of the LSR extension in that direction).

If the local frontier is empty, two possibilities occur.
Let T (qcurr) be the subtree of T rooted at qcurr. If the
open frontier of T (qcurr) is nonzero, the robot invokes
the RANDOM CHILD function. This function performs a
random selection among the children of the current node
qcurr, using a probability proportional to the open frontier
of the corresponding subtrees, and sets the target to the
chosen child. On the other hand, if the open frontier of
T (qcurr) is zero, the planner sets the target configuration
to the parent node, i.e., it forces the robot to backtrack. In
the latter case, when qcurr equals qinit, the robot is at the root
of the currently built tree and is unable to further expand it:
hence, the planner sets the target configuration to NULL and
BUILD SRT is exited.

Note that, for simplicity, we have referred to a point robot
in explaining the planner. The finite size (and possibly the
non-disk shape) of the robot is readily taken into account
by mapping frontier arcs to the configuration space, where
actual planning takes place. The possibility that the robot is
subject to nonholonomic constraints would be considered by
the MOVE TO function, which is in charge of generating
feasible paths. Controllability of the robot guarantees that
any target configuration in the LSR can be reached by a

PLAN(qcurr,F(qcurr), qinit)
1 qtarget ← NULL;
2 if F(qcurr) #= ∅
3 φrand ← RANDOM DIR(F(qcurr));
4 qtarget ← DISPLACE(qcurr, φrand);
5 else if OPEN FRONTIER(T (qcurr)) #= 0
6 qtarget ← RANDOM CHILD(qcurr);
7 else if qcurr #= qinit
8 qtarget ← qcurr.parent;
9 return qtarget;

Fig. 5. Pseudocode of the random planner.

feasible path which stays in the LSR.
Thanks to the synchronization phase performed by

BUILD AND WAIT GPA, all the robots in a GEA plan at
the same time, and therefore the cooperation mechanism
intrinsic to the local frontier definition is enforced on all
the GEA. This ‘agreement of intents’ is realized without any
centralized decision module.

D. GEA path feasibility check

Although the local frontier of the robot cannot be-
long to the LSR of another robot of the GEA (Fig. 4),
the two prospective paths may still intersect. Figure 6
is an example of the conflict that may arise. Hence,
the CHECK FEASIBILITY function verifies whether the
prospective paths of robots in the GEA G are all simul-
taneously feasible2 or not. To this end, all the pairs of
paths that intersect with each other are identified, and the
corresponding robots stored in the GEA unfeasible subset
Gu. The remaining robots are the GEA feasible subset Gf .
The complexity of this check is O(|G|2).

E. Coordination

If the subset Gu of robots with unfeasible paths is non-
empty, the coordination function is invoked (Fig. 7). The
first step is to elect a master robot within G. This can
be accomplished in many ways through a deterministic
procedure known by all the robots; for instance, the robot
with the higher ID number can be chosen. Two cases are
then possible:

1) If the robot is the master, it invokes the ORGANIZE
function, whose task is to rearrange the vector QG containing
the targets of the GEA robots so as to obtain a feasible
collective motion. Here, rearrange may mean either simply
accepting/resetting the target of a robot to the current con-
figuration (i.e, authorizing/forbidding the move) or adding a
third option, i.e., changing it to a new target. Correspond-
ingly, we have devised two versions of the function, i.e.,
ORGANIZE 1 and ORGANIZE 2 (see below).

2) If the robot is not the master, it waits for until the
receipt of a specific signal from the master.

The final operation is to retrieve and return the robot’s
(possibly modified) own target from QG .

1) Organization via arbitration: ORGANIZE 1 imple-
ments a simple arbitration mechanism on G. All the robots
contained in the feasible subset Gf are allowed to move (their

2Collision check is performed in configuration space. Not taking into
account the possibility of velocity scaling along the paths to avoid collisions.
Paths that intersect are not allowed in our approach.

WeC1.3

771

Fig. 6. The prospective paths of robots belonging to the GEA may intersect.

target configuration is left unchanged). The robots in the
unfeasible subset Gu are not allowed to move (their target
configuration is reset to the current configuration) with the
exception of a single one whose motion is authorized (by
construction, this strategy does not produce conflicts).

The selection of the authorized robot in Gu may be done
on the basis of various criteria. The one we have used
chooses randomly one of the robots (if any) whose local
frontier is empty: these are robots whose target is either their
parent node or one of their children nodes. This strategy is
motivated by the fact that, if their move is not authorized,
such robots will have to wait for their path to become clear,
as they cannot change their target (as opposed to robots
whose local frontier is non-empty, to which the random
planner may propose a different target in the next cycle).

An antithetical criterion would be to choose randomly
among the robots in Gu, using a probability proportional to
the extension of their local frontier.

2) Organization via replanning: ORGANIZE 2 tries to
modify the targets of the robots in G so as to maximize the
number of simultaneous feasible moves. This may be done
by formalizing the problem as follows.

Consider the set of target configurations QG associated to
the GEA G. Two target configurations in QG are called com-
patible if they can be reached by the corresponding robots
with paths that do not intersect. Let G be the compatibility
graph associated to {G, QG} and defined as the indirect
graph whose nodes represent the robots in G and whose
arcs join pairs of nodes with compatible targets. A maximum
clique of G is a complete subgraph of G with maximum
cardinality, corresponding to a maximum subset of robots
with compatible targets. The identification of a maximum
clique is a well-known NP-complete problem in the context
of the graph theory [17], [18].

The ideal objective of the ORGANIZE 2 function is to
modify the set of target configurations QG so as to maximize
the cardinality of the associated maximum clique(s), with
the constraint that the target of each robot is either accepted,
changed to another configuration towards the local frontier
of the robot (if this is non-empty) or to the current robot
configuration (the move is not authorized). This is a very
complex problem whose solution would require the com-
putation of maximum cliques as a subproblem. To find a
satisfactory solution in a given amount of time, we have
adopted a randomized search technique, performed by the
master as a sequential game with complete information. A

COORDINATE(Gf ,Gu)
1 master id ← MASTER ELECTION(G);
2 if my id = master id
3 QG ← ORGANIZE(Gf ,Gu);
4 else
5 WAIT;
6 return QG (my id);

Fig. 7. Pseudocode of the coordination function.

description of the game is given in [16].

V. THE SUPPORTIVE PHASE

The supportive phase (Fig. 1, lines 3–12) can be divided in
two main subphases, which are repeated over and over: (i) the
robot chooses which other robot to support in its exploration,
or, more precisely, which other tree to help expand (there
may be more than one robot acting on a tree); (ii) the selected
tree is reached and the robot tries to extend it by attaching
subtrees built via the BUILD SRT procedure.

The do-while loop is repeated until the robot has received
confirmation that all the other robots have finished their
exploration. At first, the robot collects in a set I the trees
belonging to

⋃
Ti that may need support for expansion. In

particular, a tree Ti is put in I if its open frontier is at least
equal to a constant F̄ multiplied by the number of robots
that are active on Ti according to the most recent available
information (ACTIVE AGENTS). If I is non-empty, the
robot selects a particular tree Ts from I according to some
criteria (e.g., the tree with the closest root, or with the
most recent update time), and travels to its root. Once there,
the robot begins a subtree expansion using the BUILD SRT
procedure. During this process, the robot keeps on trying to
add subtrees to Ts until it has returned to the root of Ts and
its open frontier is zero. At this point, the robot goes back
to the root of its own tree (its start configuration) and makes
itself available for supporting the expansion of other trees.

VI. SIMULATIONS

In this section we present simulations of the proposed
SRT-based cooperative exploration method in Move3D [19],
a software platform developed at LAAS-CNRS and dedicated
to motion planning3. The team is composed of a varying
number of MagellanPro carrying a 360◦ laser range finder,
with a perception range of four times the robot diameter.

The performance of the method is evaluated in terms of
exploration time (the time required by the last robot of the
team to return home) and total traveled distance (the sum
of the distances traveled by each robot). These values are
respectively expressed as a percentage of the exploration
time and traveled distance obtained with a team composed
by a single robot. Environment coverage is not reported
because it was complete in all our simulations. In view of
the randomized nature of our method, numerical results for
each situation are averaged over ten simulation runs.

Two different environments have been used. The first is
a square region with a garden-like layout, where each area
can be reached from different access points. The second,

3Move3D is at the origin of the product KineoWorks currently marketed
by the company Kineo CAM (www.kineocam.com).

WeC1.3

772

Fig. 8. Garden: SRT-based cooperative exploration with scattered start.

Fig. 9. Garden exploration with scattered start: exploration time and total
traveled distance with teams of different cardinality for unlimited (dotted
line, blue) and limited (solid line, green) communication range.

Fig. 10. Garden exploration with scattered start: waiting time with
the ORGANIZE 1 (solid line, blue) and ORGANIZE 2 (dashed line, red)
coordination strategies. Left: limited communication range. Right: unlimited
communication range.

similar to an office, extends mainly along one dimension
and contains areas (rooms) which can be accessed by one
passage (door) only.

We consider two possible initial deployments of the team.
In the first, the robots are initially scattered in the environ-
ment (as if they had been parachuted). In the second, more
realistic for environments with a single main entrance, the
exploration is started with the robots grouped in a cluster.

Figures 8–10 refer to results obtained in the garden en-
vironment with a scattered start. In particular, Fig. 8 shows
the exploration progress with a team of 10 robots in the
case of limited communication range Rc = 3Rp. Here,
ORGANIZE 2 is used for coordination. Note how each robot
builds its own SRT and never enters the supportive phase.
We have found this behavior to be common when the robots
are evenly distributed at the start.

Exploration time and traveled distance for teams of dif-
ferent cardinality are shown in Fig. 9, both in the case
of limited and unlimited communication range. Again, OR-
GANIZE 2 is used for coordination (the performance with
ORGANIZE 1 is similar). As the number of robots in the
team increases, the exploration time quickly decreases and
tends asymptotically to zero (consider that an increment
of the number of evenly deployed robots corresponds to a
decrement of the individual areas they must cover, until no
motion at all is necessary). A similar behavior is observed
for the total traveled distance; however, in the case of a
limited communication range, this parameter increases for
a two-dimensional team, due to the fact that two robots
which are far apart at the start can exchange very little
information during the exploration. As the number of robots

Fig. 11. Garden: SRT-based cooperative exploration with clustered start.

Fig. 12. Garden exploration with clustered start: exploration time (left)
and total traveled distance (right, solid blue line) with teams of different
cardinality for limited communication range. Also shown is the average
distance traveled by each robot (right, dashed violet line).

increases, communication chains are easily formed and the
total distance decreases.

The difference between the coordination strategies ORGA-
NIZE 1 and ORGANIZE 2 can be appreciated from Fig. 10,
which plots the waiting time (i.e., the average percentage
of the exploration time that a robot spends waiting due
to coordination) both in the case of limited and unlimited
communication range. The inactivity period is always smaller
with ORGANIZE 2. Note also that the waiting time grows
with the number of robots, due to the corresponding in-
creased importance of the coordination phase.

A typical exploration progress obtained in the garden
environment with a team of 5 robots with a clustered initial
deployment is shown in Fig. 11. Here, ORGANIZE 2 is used
for coordination and the communication range is limited to
Rc = 3Rp. In this case, three of the robots begin expanding
their own SRT, while the other two see no local frontier
and therefore wait until they can support the others (i.e.,
until there is a sufficient amount of open frontier in one of
the trees), joined by one of the three whose SRT expansion
terminates very soon. At the end, the environment has been
completely explored and three SRTs have been built.

Figure 12 summarizes the performance for teams of dif-
ferent cardinality. In this case the exploration time asymp-
totically tends to a nonzero value, which approximately
represents the time required by a single robot to perform
a roundtrip between the cluster center and the farthest point
in the environment. The total traveled distance increases with
the cardinality of the team because more robots try to support
the others in their expansion. Not surprisingly, the average
distance traveled by each robot tends to zero. The progress
of the cooperative exploration in the first two simulations is
shown in the video clip attachment to the paper.

The last simulation deals with the exploration of the
office environment with limited communication range. In
particular, Fig. 13 shows the progress of the exploration for
a team of 6 robots with clustered start, while Fig. 14 shows
the influence of the number of robots on the performance.

Video clips of these as well as of other simu-

WeC1.3

773

Fig. 13. Office: SRT-based cooperative exploration with clustered start.

Fig. 14. Office exploration with clustered start: exploration time (left)
and total traveled distance (right, solid blue line) with teams of different
cardinality for limited communication range. Also shown is the average
distance traveled by each robot (right, dashed violet line).

lations of our method are available at the webpage
http://www.dis.uniroma1.it/˜labrob/research/multiSRT.html .

VII. CONCLUSIONS

We have presented a randomized strategy for cooperative
exploration based on the SRT (Sensor-based Random Tree)
concept. The method entails two decentralized cooperation
mechanisms at different levels. The first simply consists
in an appropriate definition of the local frontier, by which
each robot plans its motion towards areas that appear to
be unexplored by the rest of the team on the basis of the
available information. The second allows a robot that has
completed its individual exploration phase to support the
others in their task. Local coordination guarantees that the
collective motion of the team is feasible from the collision
viewpoint. Simulation results have shown the satisfactory
performance of the method, even in the case of limited
communication radius.

In our view, the main feature of the proposed method is
that no central supervision is needed, and no task decompo-
sition/allocation is performed. The selection of exploration
actions by each robot is spontaneous and made on the basis
of the available information. This is expected to provide
robustness with respect to possible robot breakdowns as well
as communication failures.

Future work will address several aspects, i.e., the inte-
gration of a localization module along the lines of [15],
the extension to heterogeneous robots, and an experimental
validation so as to assess the robustness of the proposed
method to sensor and communication failures. Two further
aspects that will be reconsidered are memory usage and
communication procedures. In particular, the ‘broadcasting’
approach taken in this paper may be troublesome in the case
of limited bandwidth. One-to-one communication procedures
including only the most recent data can be designed to
alleviate this problem.

Finally, we are currently working to remove the separation
of the supportive phase in the current algorithm (first expand
your tree, then help others). Additional edges, called bridges,
can be used to join pairs of nodes which belong to different

SRTs and have overlapping LSRs. In this way, all the SRTs
can be connected in a single super-graph in which the bridges
can be used by the robots as collision-free local paths to
transfer from one SRT to another. This super-graph can
be incrementally updated by each robot every time a new
node is added to an SRT. Once this graph is available,
the planner can consider as possible target configurations
also the nodes of different SRTs which present promising
open frontiers and are reachable with a local bridge from
the current configuration. This modification would allow the
robots to share, at all times, all the currently built SRTs in a
more effective way, avoiding the separation between phases
and root-to-root transfers.

REFERENCES

[1] Y. Cao, A. Fukunaga, and A. Kahng, “Cooperative mobile robotics:
Antecedents and directions,” Autonomous Robots, vol. 4, no. 1, pp.
7–27, 1997.

[2] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “A taxonomy for
multi-agent robotics,” Autonomous Robots, vol. 3, pp. 375–397, 1996.

[3] I. Rekletis, G. Dudek, and E. Milios, “Multi-robot collaboration for
robust exploration,” Annals of Mathematics and Artificial Intelligence,
vol. 31, no. 1, pp. 7–40, 2001.

[4] D. Goldberg and M. Mataric, “Interference as a tool for designing and
evaluating multi-robot controllers,” in 14th AAAI/9th IAAI, 1997, pp.
637–642.

[5] T. Balch and R. Arkin, “Communication in reactive multiagent robotic
systems,” Autonomous Robots, vol. 1, no. 1, pp. 27–52, 1994.

[6] B. Yamauchi, “Frontier-based exploration using multiple robots,” in
2nd Int. Conf. on Autonomous Agents, 1998, pp. 47–53.

[7] W. Burgard, M. Moors, C. Stachniss, and F. Schneider, “Coordinated
multi-robot exploration,” IEEE Trans. on Robotics and Automation,
vol. 1, no. 3, pp. 376–386, 2005.

[8] J. Ko, B. Stewart, D. Fox, K. Konolige, and B. Limketkai, “A practical,
decision-theoretic approach to multi-robot mapping and exploration,”
in 2003 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2003,
pp. 3232–3238.

[9] A. Howard, M. Mataric, and S. Sukhatme, “An incremental deploy-
ment algorithm for mobile robot teams,” in 2003 IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, 2003, pp. 2849–2854.

[10] R. Zlot, A. Stenz, M. Dias, and S. Thayer, “Multi-robot exploration
controlled by a market economy,” in 2002 IEEE Int. Conf. on Robotics
and Automation, 2002, pp. 3016–3023.

[11] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun,
and H. Younes, “Coordination for multi-robot exploration and map-
ping,” in 17th AAAI/12th IAAI, 2000, pp. 852–858.

[12] G. Oriolo, M. Vendittelli, L. Freda, and L. Troso, “The SRT method:
Randomized strategies for exploration,” in 2004 IEEE Int. Conf. on
Robotics and Automation, 2004, pp. 4688–4694.

[13] L. Freda and G. Oriolo, “Frontier-based probabilistic strategies for
sensor-based exploration,” in 2005 IEEE Int. Conf. on Robotics and
Automation, 2005, pp. 3892–3898.

[14] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” in Algorithmic and Computational Robotics:
New Directions, B. R. Donald, K. M. Lynch, and D. Rus, Eds.
Wellesley, MA: A K Peters, 2001, ch. 10, pp. 293–308.

[15] L. Freda, F. Loiudice, and G. Oriolo, “A randomized method for
integrated exploration,” 2006 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2006.

[16] A. Franchi, L. Freda, G. Oriolo, and M. Vendittelli, “A randomized
strategy for cooperative robot exploration,” DIS, Università di Roma
“La Sapienza”, Tech. Rep., 2006.

[17] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY: W. H. Freeman,
1983.

[18] F. Harary, Graph Theory. Reading, MA: Addison-Wesley, 1994.
[19] T. Simeon, J.-P. Laumond, and F. Lamiraux, “Move3d: A generic

platform for path planning,” in 4th Int. Symp. on Assembly and Task
Planning, 2001, pp. 25–30.

WeC1.3

774

